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1 Introduction

Over the last ten years, the introduction of computer intensive statistical

methods has opened new horizons concerning the probability models that

can be fitted to genetic data, the scale of the problems that can be tack-

led and the nature of the questions that can be posed. In particular, the

application of Bayesian and likelihood methods to statistical genetics has

been facilitated enormously by these methods. Techniques generally referred

to as Markov Chain Monte Carlo (MCMC) have played a major role in

this process,stimulating synergies among scientists in different fields, such as

mathematicians, probabilists, statisticians, computer scientists and statisti-

cal geneticists.

1.1 Objectives of the Project

1. To make a survey of available literature on the topic

2. To study the possibilities of MCMC methods on genetic data

3. Develop R program to suit MCMC methods

4. Thus illustrate the MCMC sampling method, especially, Gibbs sam-

pling procedure in the field of Genetics

2 Markov Chains

Applications of Markov Chains have been made to surprisingly diverse areas;

learning theory, beginning with Estes (1950) and Bush and Mosteller (1955);

information theory, Shannon (1948); changes in attitudes, Anderson (1954);

labor and social mobility, Blumen, Kogen and Mc Caethy (1955), Berger

(1957); epidemiology of mental disease, Marshall and Goldhammer (1955);

brand loyalty and brand switching, Lipstein (1959) and Harrary and Lipstein
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(1962). The availability of an excellent software package, BUGS, that uses

Markov Chain Monte Carlo methods, makes Markov Chains favorable to

Genetics as well (Thomas, Spiegelhater and Gilks 1992). Most applications

have used only stationary Markov Chains.

A. A. Markov (1906) laid the foundations of the theory of finite Markov

chains, but concrete applications remained confined largely to card shuffling

and linguistic problems. The theoretical treatment was usually by algebraic

methods. The theory of chains with infinitely many states was introduced by

A. Kolmogorov. This new approach made the theory accessible to a wider

public and drew attention to the variety of possible applications. Since then

Markov chains have become a standard topic in probability and a familiar tool

in many applications. The existence of an invariant measure for persistent

chains was first proved by C. Derman(1954). Taboo probabilities as a pow-

erful tool in the theory of Markov chains were introduced by Chung (1953).

Time-reversed Markov chains were first considered by A. Kolmogorov. Exit

and entrance boundaries were introduced by W. Feller.

2.1 Basic Concepts

A sequence of trials with possible outcome E1, E2, . . . , is called a Markov

chain if the probabilities of sample sequences are defined by

P [Ej0 , Ej1 , . . . , Ejn ] = aj0pj0j1pj1j2 . . . pjn−2jn−1pjn−1jn ; in terms of a probabil-

ity distribution {ak} for Ek at the initial (or zero-th) trial and fixed condi-

tional probabilities pjk of Ek given that Ej has occurred at the preceding

trial. The possible outcome Ek are usually referred to as possible states of

the system, instead of saying that the nth trial results in Ek, one says that

the nth step leads to Ek. pjk is called the probability of a transition from

Ej to Ek. Also, it is assumed that the trials are performed at a uniform

rate so that the number of the step serves as time parameter. The transition
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probabilities pjk will be arranged in a matrix form which is known as the

transition probability matrix (t.p.m), P =


p11 p12 . . .

p21 p22 . . .

. . . . . . . . .

 . P is a square

matrix (finite or infinite) with non-negative elements and unit row sums.

Such a matrix is called a stochastic matrix. Any stochastic matrix can serve

as a t.p.m; together with the initial distribution {ak} it completely defines a

Markov chain with states E1, E2, . . . .

p
(n)
jk denote the probability of a transition from Ej to Ek in exactly n

steps. And p
(m+n)
jk =

∑
v

p
(m)
jv p

(n)
vk ; a special case of Chapman Kolmogorov

identity, where, for all n ≥ 0, p
(0)
jj = 1; p

(0)
jk = 0, ∀j 6= k.

A state Ek can be reached from a state Ej if there exists some n ≥ 0 such

that p
(n)
jk > 0. A set C of states is closed if no state outside C can be reached

from any state Ej in C. For an arbitrary set C of states the smallest closed

set containing C is called the closure of C.

A single state Ek forming a closed set will be called absorbing. A Markov

chain is irreducible if there exists no closed set other than the set of all states.

Clearly, C is closed if and only if, pjk = 0 whenever j is in C and k outside C.

If in the matrices P n all rows and all columns corresponding to states outside

C are deleted, there remain stochastic matrices for which the fundamental

relations.

p
(n+1)
jk =

∑
v

pjvp
(n)
vk and

p
(m+n)
jk =

∑
v

p
(m)
jv p

(n)
vk again hold. That is, we have a Markov chain defined on

C and this sub chain can be studied independently of all other states. The

state of Ek is absorbing if and only if pkk = 1 and a chain is irreducible if and
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only if, every state can be reached from every other state. The state Ej has

period t > 1 if p
(n)
jj = 0 unless n = vt is a multiple of t, and t is the largest

integer with this property. The state Ej is aperiodic if no such t > 1 exists.

A state Ej to which no return is possible (for which p
(n)
jj = 0 for all n > 0)

will be considered aperiodic.Let f
(n)
jk denote the probability that in a process

starting from Ej the first entry to Ek occurs at the nth step. We have f
(0)
jk = 0

fjk =
∞∑
n=1

f
(n)
jk . That is, the probability that starting from Ej, the system

will ever pass through Ek, fjk ≤ 1. When fjk = 1, the {f (n)
jk } is a proper

probability distribution and it is referred to as the first-passage distribution

for Ek. In particular, {f (n)
jj } represents the distribution of recurrence times

for Ej. When fjj = 1, a return to Ej is certain.

µj =
∞∑
n=1

nf
(n)
jj is the mean recurrence time for Ej. State Ej is persistent

if fjj = 1 and transient if fjj < 1 A persistent state is called null state if its

mean recurrence time µj =∞ An aperiodic persistent state Ej with µj <∞
is called ergodic. In an irreducible chain with only ergodic elements the limits

uk = limn→∞p
(n)
jk

exists and are independent of the initial state j.

A probability distribution {uk} satisfying uj =
∑

i uipij is called invariant

or stationary distribution, for the given Markov chain. An irreducible aperi-

odic chain possesses an invariant probability distribution {uk} if and only if,

it is ergodic. If a chain possesses an invariant probability distribution {uk}
then uk = 0 for each Ek that is either transient or a persistent null state.

In ergodic chains, the probabilities p
(n)
jk tend to the term uk of the invariant

probability distribution.
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3 Monte Carlo Methods

Monte Carlo is the art of approximating an expectation by the sample mean

of a function of simulated random variables. It is about invoking laws of

large numbers to approximate expectations. Consider a (possibly multidi-

mensional) rv X having distribution function FX(x) on a set of values X .

Then the expected value of a function g of X is,

E(g(X)) =

∫
X
g(x)dFX(x)

where integral is taken in Lebesque-Steiljes sense.

Now, if we were to take an n-sample of X’s, (x1, x2, . . . , xn), and we

computed the mean of g(x) over the sample, then, we would have the Monte

Carlo estimate

g̃n(x) =
1

n

n∑
i=1

g(xi)

of E(g(X)). We could alternatively speak of the rv

g̃n(X) =
1

n

n∑
i=1

g(Xi)

called the Monte Carlo estimator of E(g(X)). If E(g(X)) exists, then the

weak law of large numbers tells us that for any arbitrarily small ε,

limn→∞P (| g̃n(x)− E(g(X)) |≥ ε) = 0.

Also,

E(g̃n(X)) = E(
1

n

n∑
i=1

g(Xi))

=
1

n

n∑
i=1

E(g(Xi))

= E(g(X))

that is, g̃n(x) is unbiased for E(g(X)). This result becomes useful when

one realizes that many quantities of interest may be cast as expectations.
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The immediate consequence of this is that all probabilities, integrals, and

summations can be approximated by the Monte Carlo method. And,

V ar(g̃n(X)) = V ar(
1

n

n∑
i=1

g(Xi))

=
V ar(g(X))

n

An unbiased estimator for V ar(g(X)) is

Ṽ ar(g(X)) =
1

n− 1

n∑
i=1

(g(xi)− g̃n(x))2

= σ2

Ṽ ar(g̃n(X)) =
Ṽ ar(g(X))

n

=
σ2

n

=

∫
X

[g(x)− E(g(X))]2dFX(x)

Hence as n increases, variance reduces. In general, the aims of Monte

Carlo methods are to solve one or both of the following:

1.to generate samples (x1, x2, . . . , xn) from a given pmf or pdf fX(x) known

usually as the target density.

2.to estimate expectations of functions under this distribution.

The usual procedure is to generate samples from the target density f ∗(x) =

f(x)/K, where, x ∈ Rd, f (x) is the unnormalized density, and K is the

(possibly unknown ) normalizing constant. Let h(x) be a density (candidate

or proposal density) that can be simulated by some known method, and

suppose there is a known constant C such that f(x) ≤ C h(x) for all x. Then

the following algorithm is executed to obtain a random variate from f ∗(.).
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1. Generate a candidate Z from h(.) and a value u from U(0, 1), the

uniform distribution on (0, 1).

2. If u ≤ f(z)/C h(x), set Z = y.

3. Else go to step 1.

It is shown that the accepted value y is a random variate from f ∗(.) (S.Chib

and E.Greenberg 1995). For this method to be efficient, C must be carefully

selected.

4 MCMC Methods

Monte Carlo simulation methods simulate independent rvs identically dis-

tributed with density function fX(x), the target density. These methods

work well if the proposal density h(x) is similar to f(x). In large and com-

plex problems it is difficult to find a single density h(x) that has this property.

MCMC methods are a class of methods for sampling from probability distri-

butions based on constructing a Markov chain that has the target distribution

as its stationary(invariant) distribution. This involves a Markov process in

which a sequence of states {xt} is generated, each sample xt having a prob-

ability distribution that depends on the previous value xt−1. The process is

started at an arbitrary x and iterated a large number of times. After this

large numbers, the distribution of the observations generated from the simu-

lation is approximately the target distribution (invariant disrtibution of the

chain). This convergence to the invariant distribution occurs under mild reg-

ularity conditions. The regularity conditions required are irreducibility and

aperiodicity. The usual sampling methods are the Metropolis-Hastings(MH)

Sampling and Gibbs Sampling.
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4.1 Metropolis-Hastings Sampling

This method also makes use of a proposal density q(x), which depends on the

current state xt to generate a new proposed sample x′, q(x′ | xt). It generates

a Markov chain in which each state xt+1 depends only on the previous state

xt. As before, assume that we can evaluate f ∗(x) for any x. A tentative new

state x′ is generated from the proposal density q(x′ | xt). Now, we compute

the ratio

α(x′, xt) =
f ∗(x′)q(xt | x′)
f ∗(xt)q(x′ | xt)

If α ≥ 1, the new state is accepted, that is, xt+1 = x′, otherwise(α < 1),

xt+1 =

 x′ with probability α

xt with probability 1− α

When α < 1, we generate a random variable u from uniform U(0, 1) and

if the value of u < α, we accept x′ as xt+1, otherwise we set, xt+1 = xt.

For any positive q, (q(x′ | x) > 0 ∀x , x′), as t → ∞, the probability distri-

bution of X t tends to f(x).

4.2 Gibbs Sampling

To implement the M-H algorithm, it is necessary that a suitable proposal

density be specified. This density is selected from a family of distributions

that requires the specification of such tuning parameters as the location and

scale.

One family of proposal densities is given by q(x, y) = q1(y − x), where q1(.)

is a multivariate density. The candidate y is thus drawn according to the

process y = x + z, where z is called the increment random variable and fol-

lows the distribution q1. A second family of proposal densities is given by

the form q(x, y) = q2(y). In contrast to the random walk chain, the can-

didates are drawn independently of the current location x. A third choice,
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which seems to be an efficient solution when available, is to exploit the known

form of f ∗(.) to specify a proposal density. A fourth method is to use the

acceptance-rejection method with a pseudo dominating density. And a fifth

family is represented by a vector autoregressive process of order 1.

Another method of applying M-H algorithm, called block-at-a-time or variable-

at-a-time method simplifies the search for a suitable proposal density. Con-

sider a two variable situation, x = (x1, x2). Suppose that there exists a con-

ditional transition kernel P1(x1, dy1 | x2) with the property that, for a fixed

value of x2, F
∗
1|2(. | x2) is its invariant distribution (with density f ∗1|2(. | x2)).

That is,

F ∗1|2(dy1 | x2) =

∫
P1(x1, dy1 | x2)f ∗1|2(x1 | x2)dx1

Also suppose the existence of a conditional transition kernel P2(x2, dy2 | x1)

with the property that, for a fixed value of x1, F
∗
2|1(. | x1) is its invariant

distribution (with density f ∗2|1(. | x1)). P (x,A) for x ∈ Rd, A ∈ B (the tran-

sition kernel), denote the conditional distribution function that represents

the probability of moving from x to point in the set A. Now the product

of the transition kernel has f ∗(x1, x2) as its invariant density ( Product of

Kernels principle as called by S.Chib and E.Greenberg (2003)). Letting

P1(x1, dy1 | x2) = F ∗1|2(dy1 | x2)

and

P2(x2, dy2 | y1) = F ∗2|1(dy2 | y1)

the resulting method is called Gibbs algorithm, in which case

α(x, y) = 1 for all x, y.

Thus Gibbs sampling is a special case of the M-H method. Gibbs sampling

is applicable in multivariate situations when the joint distribution is not

known explicitly, but the conditional distribution of each variable is known.

Let X = (X1, X2) with joint density fX1,X2(x1, x2). Here, we begin with a

value x0
2 and sample x0

1 from the conditional density f(x1 | x0
2). Next value
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x1
2 is sampled from f(x2 | x0

1). Now x1
1 is sampled from f(x1 | x1

2), and so on.

In general, if X = (X1, X2, . . . , Xk) with joint density fX(x), at the (t+ 1)th

step, with xt = (xt1, x
t
2, . . . , x

t
k),

xt+1
1 ∼ f(x1 | xt2, xt3, . . . , xtk)
xt+1

2 ∼ f(x2 | xt+1
1 , xt3, . . . , x

t
k)

. . . . . . . . .

xt+1
k ∼ f(x1 | xt+1

1 , xt+1
2 , . . . , xt+1

k−1)

and form, xt+1 = (xt+1
1 , xt+1

2 , . . . , xt+1
k ). The collection of full conditional

distributions uniquely determines the joint distribution, provided the joint

distribution is proper. Gibbs sampling is a MH method where every proposal

is always accepted and the probability distribution of X t tends to fX(x) as

t→∞, and hence, each component X t
j is very nearly a random sample from

the marginal distribution fXj
(xj), for j = 1, 2, . . . , k, provided t is sufficiently

large.

4.3 Convergence of the Chain

The time series plot, obtained by plotting the random variable being gener-

ated against the number of iterations, is a method to study the behavior of

the chain. A chain is said to be poorly mixing if it stays in small regions of

the parameter space for long periods of time, as opposed to a well mixing

chain that explore the whole space uniformly (Walley 1991).

5 Bayes’ Theorem in Statistical Decision The-

ory

Statistical decision theory is concerned with the making of decisions in the

presence of statistical knowledge which sheds light on some of the uncertain-

ties involved in the decision problem. Classical statistics is directed towards

the use of sample information in making inferences about θ. In decision
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theory, an attempt is made to combine the sample information with other

relevant aspects of the problem in order to make the best decision. In addi-

tion to the sample information, two other types of information are typically

relevant. The first is a knowledge of the possible consequences of the deci-

sions. Often this knowledge can be quantified by determining the loss that

would be incurred for each possible values of θ. The second source of non

sample information that is useful to consider is called prior information. This

is information about θ arising from sources other than current statistical in-

vestigation. Generally, prior information comes from past experience about

similar situations involving similar θ. To evaluate the probability of a hy-

pothesis, the Bayesian probabilist specifies some prior probability, which is

then updated in the light of new relevant data.

One reason why interest in Bayesian methods has flourished is because of

the great strides in Bayesian computing. The fundamental work of Geman

and Geman(1984) influenced Gelfand and Smith(1990) to write a new paper

that sparked new interest in Bayesian methods, statistical computing, algo-

rithms and stochastic processes through the use of MCMC methods such as

the Gibbs sampler and the Metropolis-Hastings algorithm.

5.1 Bayes’ Theorem

Bayes Theorem is an essential element of the Bayesian approach to statistical

inference. Bayes Theorem is also referred to in the literature as the ’Principle

of inverse probability’. Bayes Theorem:

P (A | B) =
P (B | A)P (A)

P (B)
, P (B) > 0,

where A and B are any two events associated with a random experiment.

Generalized Bayes Theorem: Let A1, A2, . . . , be an finite or infinite
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sequence of mutually exclusive events with
⋃∞
i=1Ai = Ω, the sample space

and P (Ai) > 0 for i = 1, 2, . . . . Suppose B ⊂ Ω is any other event such that

P (B) > 0, then,

P (Ai | B) =
P (B | Ai)P (Ai)∑∞
j=1 P (B | Aj)P (Aj)

, i = 1, 2, . . . .

5.2 Bayesian Estimation

To estimate θ, a number of classical techniques can be applied to the posterior

distribution. The most common classical technique is maximum likelihood

estimation, which chooses, as the estimate of θ the value θ̂ which maximizes

the likelihood function. The analogous Bayesian estimate is defined as fol-

lows.

Definition 5.1. The generalized maximum likelihood estimate of θ is the

largest mode θ̂, of the posterior distribution g(θ | x).

An important element of many Bayesian Analysis is the prior information

concerning θ. A convenient way to quantify such information is in terms of

a probability distribution on Θ, g(θ). There are different methods for prior

density determination. The two most important and most sought after meth-

ods are conjugate method and method of noninformative priors.

Conjugate Families: Let F denote the class of density functions f(x |
θ), indexed by θ. A class P of prior distributions is said to be conjugate fam-

ily for F if g(θ | x), the posterior density, is in the class P , for all f ∈ F and

g ∈ P . For a given class of densities F , a conjugate family can frequently be

determined by examining the likelihood functions lk(θ) = f(x | θ), and choos-

ing as a conjugate family, the class of distributions with the same functional
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form as these likelihood functions. When dealing with conjugate priors, there

is generally no need to explicitly calculate m(x), the unconditional marginal

density of sample X. The reason is that since g(θ | x) = h(x,θ)
m(x)

, the factors

involving θ in g(θ | x) must be same as the factors involving θ in h(x, θ).

Hence it is only necessary to look at the factors involving θ in h(x, θ), and

if these can be recognized as belonging to a particular distribution. If so,

g(θ | x) is that distribution. The marginal density m(x) can then be deter-

mined, if desired, by dividing h(x, θ) by g(θ | x).

Non informative priors: Once a loss and prior have been chosen, the

calculation of the Bayes rule will be seen to be straight forward. This makes

appealing attempts to use the Bayesian approach even when no, or limited,

prior information is available. What is needed in such situations is a non

informative prior, by which is meant a prior which favours no possible val-

ues of θ over others (that is, which contains no information about θ). The

simplest situation to consider is when Θ is a finite set, consisting of say, n

elements. The obvious non informative prior is to then give each element of

Θ probability 1
n
. Here, equality of chances is blended with our ignorance.

5.3 MCMC in Bayesian Analysis

Bayesian analysis is performed by combining the prior information g(θ) and

the sample information x into the posterior distribution of θ given x, g(θ | x)

from which all decisions and inferences about θ are made.

g(θ | x) =
h(x, θ)

m(x)

=
joint density of X and θ

marginal density of X

14



=
g(θ)f(x | θ)∑

Θ

g(θ)f(x | θ)

or

=
g(θ)f(x | θ)∫
Θ

g(θ)f(x | θ)

When the parameter space Θ is not one dimensional, Bayesian analysis

involves evaluation of multiple integration or summation, and so, have been

of limited use for many practical applications. MCMC procedures allow us

to avoid these difficulties by simulating correlated sequences, or, first order

Markov chains, such that the posterior density(target density here)

g(θ | x) is the invariant distribution of the chain. Features of the posterior

distributions (mean,median,mode,quantiles,etc.) are approximated by the

corresponding features of sampled values.

6 Application of MCMC Method to Breast

Cancer Study

Numerous studies have investigated the genetic transmission of breast can-

cer. Claus et al(1991) uses known genetic methods like segregation analysis

to investigate the familial risk of breast cancer based on a large case-control

study and concludes that a small number of affected cases were due to the

presence of a rare autosomal dominant allele, where as a larger number of

cases reported were non genetic.

Segregation analysis and goodness of fit tests of genetic models provided

evidence for the existence of a rare dominant allele (A) leading to increased

susceptibility to breast cancer. The effect of genotype on the risk of breast
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cancer is shown to be a function of a woman’s age. The life time risk of

breast cancer for carriers of the abnormal allele (A) was estimated to be

nearly 100%. Thus, persons with both the genotypes AA and Aa will be af-

fected by the disease at some time during their life period.

In the present study, we propose Gibbs sampling from Multinomial-Dirichlet

distributions to estimate the proportion of persons affected with breast can-

cer at different age groups.

6.1 Theoretical Basis

The variable X = (X1, X2, . . . , Xp) has the Multinomial distribution

(N ; θ1, θ2, . . . , θp), where θi > 0, for i = i, 2, . . . p

p∑
i=1

θi = 1,

p∑
i=1

Xi = N

and

P (X | N ; θ1, θ2, . . . , θp) =


N

x1x2 . . . xp

 θx11 θ
x2
2 . . . θ

xp
p .

The marginal distribution of each Xi being

Xi ∼ Binomial(N, θi);

0 ≤ θi ≤ 1, i = 1, 2, . . . , p.

The conjugate prior of the Multinomial distribution is the Dirichlet distribu-

tion, the multivariate generalization of beta distribution. Hence the param-

eter vector θ = (θ1, θ2, . . . , θp) has a prior distribution given by,

θ ∼ Dirichlet(α1, α2, . . . , αp) whose density function is given by

g(θ | α1, α2, . . . , αp) =
Γ(Σαi)∏

(Γαi)
θ

(α1−1)
1 θ

(α2−1)
2 . . . θ(αp−1)

p , αi > 0

and 0 ≤ θi ≤ 1,
∑
θi = 1.
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Marginally, θi ∼ Beta(αi,
∑
k 6=i

αk) , i = 1, 2, . . . , p.

The posterior distribution of θ given X is,

θ | x ∼ Dirichlet(x1 + α1, x2 + α2, . . . , xp + αp).

6.2 Study

Claus et.al (1991) estimated the proportions in the population affected by

breast cancer at different age groups as given in the table 1:

Age (years) Proportion

20 - 29 0.0167

30 - 39 0.1277

40 - 49 0.2314

50 - 59 0.1719

60 - 69 0.1266

70 - 79 0.2709

80 + 0.0548

Total 1.0000

Table 1: Proportions of breast cancer patients

Because of the extremely low occurrence of breast cancer in women before

the age of 20 years, the probability of becoming affected with breast cancer

before 20 years is assumed to be zero. In the present study, we considered

the seven age groups as seven classes of a multinomial distribution (see table

1).

X
(r)
i =

 1 if rth person has breast cancer at an age belonging to agegroup i

0 otherwise

for i = 1, 2, . . . , 7 ; r = 1, 2, . . . , N .

θi = P (X
(r)
i = 1 | X(r)

i−1 = 0); i = 1, 2, . . . , 7, with X
(r)
0 = 0.
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Different age groups are the ages at onset of the disease and age group 80+

can be thought of as being not affected and hence, θ7 = 1−
6∑
i=1

θi.

Also, each X
(r)
i ∼ Bernoulli(θi); i = 1, 2, . . . , 7, and,

θi = P (occurrence of breast cancer in the age group i ) = E(X
(r)
i ).

Also, Xi =
∑
r

X
(r)
i ∼ Binomial(N, θi); i = 1, 2, . . . , 7.

Hence, X = (X1, X2, . . . , X7) ∼ Multinomial(N, θ1, θ2, . . . , θ7).

A lot of non genetic parameters may lead to the occurrence of the disease to

a non carrier (a person with two normal allele of the gene - aa); for exam-

ple, the occurrence of ovarian cancer, late marriage, infertility etc. It is well

known that the beta (dirichlet) is the conjugate prior of the binomial (multi-

nomial). One of the many applications of the beta distribution in Statistics

is in the context of bioassay. The most common use of the beta in bioassay

is in modeling parameter of a binomial distribution. A typical application is

in quantal bioassay, where ’success’ may constitute detection of a tumor of a

certain type in a certain organ. In more general settings, such as multinomial

response vector, the multivariate generalization of the beta distribution, the

Dirichlet, is often used as a model for the response vector; in this case the

beta will appear as a model for the marginal distributions.

Hence, we let, θi ∼ Beta(αi, βi); i = 1, 2, . . . , 7, where βi =
∑
k 6=i

αk, and

θ = (θ1, θ2, . . . , θ7) ∼ Dirichlet(α1, α2, . . . , α7). Hence the prior distribution

of θ is

g(θ) = Dirichlet(α1, α2, . . . , α7). The posterior distribution g(θ | x) is

Dirichlet (α1 + x1, α2 + x2, . . . , α7 + x7).

We begin Gibbs sampling by assigning to θ = (θ1, θ2, . . . , θ7), the prior

probabilities obtained from Table 1. A random sample is drawn from

Multinomial(N ; θ1, θ2, . . . , θ7), with N = 100. These values are taken as the
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first parameter values of beta distributions for the initial values of the itera-

tions. At the end of the iterations, we have a sample of size m, the number of

simulations, from the posterior distribution, arrayed as


θ

(1)
1 θ

(1)
2 . . . θ

(1)
7

θ
(2)
1 θ

(2)
2 . . . θ

(2)
7

. . . . . . . . . . . .

θ
(m)
1 θ

(m)
2 . . . θ

(m)
7

 .

Each row is a sample from the joint posterior distribution and columns are

samples from the marginal distributions. First column gives samples from

g(θ1 | x) and second column gives samples from g(θ2 | x) and so on. Now,

discarding the initial values and averaging over the sample size, we get the

improved estimates of the parameters. The R program code used for estima-

tion is given in Appendix I. The proportions are estimated in four runs of

the program and the output for the program execution is given in the Table

2. The variances of the proportions for various runs of the program is given

in the Table 3. We estimate the proportions using uniform prior and the

estimated values for four runs of the program is given in the Table 4.The

prior proportions and the estimated proportions are plotted in Figures 1, 2,

3 and 4. The convergence of the chains are depicted in Figures 5, 6 7 and

8.

6.3 Output Analysis

Table 2 depicts the output analysis of the study for the seven groups for

four runs of the program in Appendix.

Invoking Table 2 and Figures 1 and 2, the value of θ̂3 and θ̂6 are larger,

compared to the values of all other parameters, leading to the conclusion

that, the age groups 40+ and 70+ are the highest probable ages at onset of

breast cancer.

As is evident from Table 3, the extremely small variances of the iterated

values illustrate the suitability of Gibbs sampling in the situation. Also, it
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Age (years) θ̂ Run1 Run2 Run3 Run4

20 - 29 θ̂1 0.01007200 0.01033389 0.01965272 0.01007097

30 - 39 θ̂2 0.14942026 0.13028229 0.09966381 0.09102453

40 - 49 θ̂3 0.25005136 0.24093310 0.27035829 0.26979353

50 - 59 θ̂4 0.15055422 0.18986951 0.19958647 0.22040184

60 - 69 θ̂5 0.14980235 0.11028538 0.08959871 0.12051873

70 - 79 θ̂6 0.25036396 0.24954914 0.26031505 0.23963357

80 + θ̂7 0.03999377 0.07052424 0.06031410 0.04930833

Total - 1.00025792 1.001778 0.9994892 1.000751

Table 2: MCMC estimates of Proportions

Variances Run1 Run2 Run3 Run4

θ̂1 0.000106198 0.0001073495 0.0001842645 0.0001019053

θ̂2 0.0012585498 0.001106535 0.0008381735 0.0008451778

θ̂3 0.0019129253 0.0017651658 0.0019923381 0.0019049895

θ̂4 0.0012695066 0.0015165971 0.0015674542 0.0017302377

θ̂5 0.0012813251 0.0009974279 0.0008056178 0.001045555

θ̂6 0.0018793944 0.0018086309 0.0019176001 0.0018403571

θ̂7 0.0003776579 0.0006548418 0.0005499078 0.0004634782

Table 3: MCMC estimates of Variances of θ̂i

is evident from the Figures 5 and 6, that, the chain that is generated is very

efficient. The time plots of the generated chains are depicted in Figures 5

and 6. It is seen that all the chains mix well and converge quickly to station-

ary distributions, as there are no horizontal regions visible in the graphs.

We may discard the initial values of iteration, and use improper priors

like Uniform(0, 1) to get the initial values. The corresponding R code is

X[1,] < −runif(7). And the output of various runs is given in Table 4. The
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use of noninformative prior also gives us the same results. This is evident

from Table 4 and Figures 3, 4, 7 and 8.

θ̂ Run1 Run2 Run3 Run4

θ̂1 0.01009671 0.01981130 0.01014169 0.0099534367

θ̂2 0.12982770 0.14016432 0.07934393 0.159175893

θ̂3 0.26999674 0.27926111 0.25974321 0.229998541

θ̂4 0.12967862 0.18090535 0.22011336 0.188592595

θ̂5 0.11975033 0.08004237 0.11018176 0.099838067

θ̂6 0.26946581 0.2497542 0.27010255 0.250795979

θ̂7 0.06970986 0.04947005 0.04989858 0.0060248363

Total 0.99862209 0.9994087 0.9995251 0.998603

Table 4: Proportions using initial values from Uniform prior
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7 Conclusion

Present study agrees with the conclusion in Claus et. al (1991), that, there

is higher probabilities for the age groups 40+ and 70+ to be the ages at onset

of disease, for those getting affected. MCMC analysis proves to be highly

effective in estimating proportions of patients with a particular disease in a

selected population.

It is usually difficult to localize genes that cause diseases with late ages at

onset. These diseases frequently exhibit complex modes of inheritance, and

only recent generations are available to be genotyped and phenotyped. In

such situations, multipoint analysis using traditional exact linkage analysis

methods, with many markers and full pedigree information, is a computa-

tionally intractable problem. MCMC sampling provides a tool to address

this issue. This is effective not only in cancer studies but in the study of

diseases like Alzheimer.

7.1 Publication

(i) Application of Multinomial-Dirichlet Cojugate in MCMC Estimation:

A Breast cancer Study- published in International Journal of Mathe-

matical Analysis, vol.4,(2010), no.41, pp 2043-2049.

7.2 Paper Presentation

(i) Presented a paper entitled Applications of Bayesian Theory in Genetics

at the National Seminar held at NAS College, Kanhangad, during 12-

14, Feb. 2009.
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Appendix
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Figure 1: Proportions for Run I

Figure 2: Proportions for Run II
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Figure 3: Proportions for Run I under Uniform prior

Figure 4: Proportions for Run II under Uniform prior
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Figure 5: Convergence of the Chains
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Figure 6: Convergence of the Chains
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Figure 7: Convergence of the Chains under Uniform prior
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Figure 8: Convergence of the Chains under Uniform prior
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